百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Python常用标准库(pickle序列化和JSON序列化)

haoteby 2025-10-23 02:20 2 浏览

常用的标准库

序列化模块

import pickle

序列化和反序列化

把不能直接存储的数据变得可存储,这个过程叫做序列化。把文件中的数据拿出来,恢复称原来的数据类型,这个过程叫做反序列化。

在文件中存储的数据只能是字符串,或者是字节流,不能是其它的数据类型,但是如果想要将其存储就需要序列化。

Python中的序列化模块叫做 pickle,PHP等其它的一些语言将其称作serialize 或者unserialize,每个语言的序列化功能可以序列化它本身的一切数据类型。

使用场景

现在存在一段数据,现在并不需要他,但是说不定什么时候我就要用它,那么最好的方法就是将这段数据保存起来。

保存这段数据一般来说有那么几种方法(入库或者保存文件),但是这段数据很复杂,而保存在数据库中需要特定的数据格式,入库的话就非常的麻烦了,而且我不想破坏数据的原有格式,那么可以选择保存为文件。

如下所示:保存文件会遇到种种的麻烦问题。

# 这是我想要保存的一段数据
lst = ['A', 'B', 'C']

# 直接使用open函数不能将非字符串和非字节流的数据写入文件
with open('data.txt', 'w', encoding='UTF-8') as fp :
	fp.write(lst)
# !!! TypeError

# 将数据变成字符串就破坏了原有的数据结构(如果很复杂的数据结构几乎没有复原的可能性)
lst = str(lst)

# 将数据变成字节流:只能将字符串变成字节流数据!

现在就可以使用序列化功能,将数据序列化成为字节流的格式,然后存在文件当中,当需要的时候,再从文件中读取出来,然后反序列化成为数据原来的样子,而且保证原数据的数据结构没有变化。

而且可以序列化语言当中的任何数据类型,就是说不止是基本的数据类型,还有函数、类型、对象……

dumps & loads

dumps将任意对象序列化成bytes数据,loads将序列化成为bytes的数据反序列成数据原本的格式。

注意:只能反序列化被序列化的数据

import pickle


# 这是我想要保存的一段数据
lst = ['A', 'B', 'C']


# dumps 把任意对象序列化成bytes
res = pickle.dumps(lst)
print(res)  # b'\x80\x03]q\x00(X\x01\x00\x00\x00Aq\x01X\x01\x00\x00\x00Bq\x02X\x01\x00\x00\x00Cq\x03e.'
print(type(res))  # <class 'bytes'>
# 序列化后的bytes数据可以写入文件中。


# loads 把任意bytes反序列化成为原来的数据
lst = pickle.loads(res)
print(lst)  # ['A', 'B', 'C']
print(type(lst))  # <class 'list'>


# 尝试反序列化其它的bytes数据
char = '你好'
by_char = char.encode()
new_char = pickle.loads(by_char)  # _pickle.UnpicklingError: invalid load key, '\xe4'.

dump & load

含义和上述的相同,只是这个可以直接操作IO对象,省时省力。

import pickle


# 这是我想要保存的一段数据
lst = ['A', 'B', 'C']


# dumps 和 loads 配合文件操作
# 序列化后写入文件
with open('test.txt', 'wb') as fp:
    data = pickle.dumps(lst)
    fp.write(data)
# 读取文件反序列化
with open('test.txt', 'rb') as fp:
    data = fp.read()
    lst = pickle.loads(data)


# dump 和 load 配合文件操作
# 序列化写入文件
with open('test.txt', 'wb') as fp:
    pickle.dump(lst, fp)
# 读取文件反序列化
with open('test.txt', 'rb') as fp:
    lst = pickle.load(fp)

JSON序列化模块

import json

使用场景

序列化后的数据,如果想在多种语言中都可以流通怎么办?每种语言都有自己的语言特性,有些语言中的数据是特有的,那么序列化后的数据该怎么流通呢?

每种语言虽然各有自己的特点,但是几乎所以的语言都是师出同门,天下语言无不出C者。所以将每种语言共同存在的数据格式按照统一的标准去序列化就可以了,JSON诞生了。

json一般存储为json文件。

支持的数据类型

python中支持JSON序列化的数据一共有八种类型:

int、float、bool、str、list、tuple、dict、None

JSON序列化支持这几种数据类型是因为JSON中就只支持这几种数据类型:

如下为python中的数据类型对应json中的数据类型;

python数据类型

JSON数据类型

int

int

float

float

bool(True,False)

bool(true,false)

None

null

str

str(必须双引号)

list([])、tuple(())

Array([])

dict({})

Object({})(键必须是双引号)

注意:

  1. JSON中没有元组类型,所以会变成列表;
  2. JSON中的对象必须使用字符串作为键,所以python中的字典数据中的非字符串键,会变成对应的JSON数据然后强转成为字符串;
import json

dict_var = {1: 1, 2.2: 2.2, False: True, '123': '123', "234": "234", None: None}

json_obj = json.dumps(dict_var)
dict_var = json.loads(json_obj)

print(dict_var)
# {'1': 1, '2.2': 2.2, 'false': True, '123': '123', '234': '234', 'null': None}

JSON和pickle的区别

JSON可以序列化python八种数据,序列化为字符串

pickle可以序列化python所有的数据类型,序列化为字节流

序列化函数

JSON序列化函数和pickle的一样,名称和使用方法基本一样:

方法

含义

dumps

序列化

loads

反序列化

dump

序列化写入文件

load

读取文件反序列化

这里注意一下序列化方法的几个常用参数:

ensure_asscii 默认为True, 以ACSII格式编码,以Unicode显示;

sort_keys 默认为True, 对字典的键进行排序;

indent默认为None, json格式化默认是一行不加缩进的,如果indent是一个正整数,就以该缩进级别进行换行,增强可视化。

import json

# 开启排序
dict_var = {'B': '2', 'A': '1'}
print(dict_var)  # {'B': '2', 'A': '1'}
json_char = json.dumps(dict_var, ensure_ascii=False, sort_keys=True)
dict_var = json.loads(json_char)
print(dict_var)  # {'A': '1', 'B': '2'}

# 关闭排序
dict_var = {'B': '2', 'A': '1'}
print(dict_var)  # {'B': '2', 'A': '1'}
json_char = json.dumps(dict_var, ensure_ascii=False, sort_keys=False)
dict_var = json.loads(json_char)
print(dict_var)  # {'B': '2', 'A': '1'}

# dump 也一样哦

json和pickle实际使用过程中的一些问题

在对文件进行操作的时候:

  • json可以连续dump,但是不能连续load
  • pickle可以连续dump和load

如下解释:

# json 可以连续dump,但是不能连续load
import json

# 序列化数据
lst1 = [1, 2, 3]
lst2 = [4, 5, 6]
lst3 = [7, 8, 9]

# 序列化写入文件
with open('test.json', 'w', encoding='UTF-8') as fp:
    json.dump(lst1, fp)
    json.dump(lst2, fp)
    json.dump(lst3, fp)

# 读取文件反序列化
with open('test.json', 'r', encoding='UTF-8') as fp:
    data1 = json.load(fp)  # ERROR
    data2 = json.load(fp)
    data3 = json.load(fp)

# !!! json.decoder.JSONDecodeError: Extra data: line 1 column 10 (char 9)

因为 json.dump 方法序列化写入文件的时候,写入了两个及以上的数据,之后 json.load 方法在读的时候又是一次性将整个文件中的数据读取出来,这个时候,反序列化的数据成了 [1, 2, 3][4, 5, 6][7, 8, 9] ,这明显不是一个json支持的数据格式,所以 json.load 失败了。

再来看pickle是怎么样的:

# pickle 可以连续dump,也可以连续load
import pickle

# 序列化数据
lst1 = [1, 2, 3]
lst2 = [4, 5, 6]
lst3 = [7, 8, 9]

# 序列化写入文件
with open('pickle.txt', 'wb') as fp:
    pickle.dump(lst1, fp)
    pickle.dump(lst2, fp)
    pickle.dump(lst3, fp)

# 读取文件反序列化
with open('pickle.txt', 'rb') as fp:
    data1 = pickle.load(fp)  # [1, 2, 3]
    print(data1)
    data2 = pickle.load(fp)  # [4, 5, 6]
    print(data2)
    data3 = pickle.load(fp)  # [7, 8, 9]
    print(data3)

# 尝试先逐行读取,再反序列化
with open('pickle.txt', 'rb') as fp:
    datum = fp.readlines()
    print(len(datum))  # 1
    
    for data in datum:
        data = pickle.loads(data)
        print(data)  # [1, 2, 3]   # 只能读出一个

可以看到 pickle.load 将数据都读出来了,这是因为 pickle.dump 在写入数据的时候在每条数据后都加上了一个标记(有些人解释说是换行,但是文件中并没有换行,逐行使用 fp.readlines 逐行读取的时候也只能获取一条,但是在文件中所有的数据都是在同一行的,我也不太懂了(无奈)),然后 pickle.load 每次就只会读一条数据,从IO指针读到每条数据后的那个标记为止,所以,pickle 可以连续的 load

怎么解决json的这个问题?

其实上面的这个问题,我个人认为是一种不规范的操作。因为 json.load 会一次性的读取整个文件中的内容,你却在一个文件中写入了不止一条的数据,那么在反序列化的时候当然会报错了。所以我认为:

json的主要作用多语言之前的数据传递和数据存储,每个JSON文件中最好只储存一条完整的数据。

但是我就想在一个json文件中存多个数据呢?

其实思路很简单,关键就是读取文件然后反序列化的时候,必须是一条数据、一条数据的反序列化,类似如下:

import json

# 序列化数据
lst1 = [1, 2, 3]
lst2 = [4, 5, 6]
lst3 = [7, 8, 9]

# 序列化写入文件,每写入一条数据插一个换行
with open('test.json', 'w', encoding='UTF-8') as fp:
    json.dump(lst1, fp)
    fp.write('\n')
    json.dump(lst2, fp)
    fp.write('\n')
    json.dump(lst3, fp)

# 读取文件反序列化(逐行读取数据,然后反序列化)
with open('test.json', 'r', encoding='UTF-8') as fp:
    datum = fp.readlines()
    print(len(datum))  # 3

    for data in datum:
        data = json.loads(data)
        print(data)  # [1, 2, 3]
                     # [4, 5, 6]
                     # [7, 8, 9]

pickle和json的区别总结

  1. json序列化后的数据为字符串,pickle序列化后的数据为字节流;
  2. json支持八种数据类型(int、float、bool、str、list、tuple、dict、None),pickle支持python的一切数据类型;
  3. json一般用于多语言间的数据交流,pickle一般用于python之间数据交流;

文章来自
https://www.cnblogs.com/msr20666/p/16308669.html

相关推荐

统统都能轻松装下。_如何安装统赢

今天必须来好好聊聊迈腾甄选款的外观升级优势,简直是把经典与时尚玩明白了!迈腾甄选款巧妙地保留了迈腾的经典气场和造型,就像一位历经岁月沉淀却风采依旧的绅士。2871mm的超长轴距搭配超短前后悬设计,这就...

麒麟操作系统常见问题:打开火狐浏览器提示没有安装flash插件

关键词:火狐浏览器、flash、插件、安装问题类型:...

VS Code 新手必装插件清单_vs code 安装插件

以下是针对VSCode新手的必装插件清单,覆盖代码编辑、效率提升、美化等核心需求,适用于大多数开发场景:一、基础必备插件Chinese(Simplified)(简体中文)功能:将VSC...

开源JSON可视神器,让阅读JSON变得简单!-JSONHero

众所周知,现在有不少代码编辑器以及在线工具,都支持JSON格式化,因此这一特性,已经不能称的上是亮点。调试工具已经成为每个开发者不可或缺的“利器”。但是,你见过能直接可视化JSON数据,把整个...

在NAS上部署Barcode服务_nas basic

部署基于BWIP-JS的条形码生成APIBWIP-JS是一个优秀的JavaScript条形码生成库,它支持多种条形码类型,并且可以运行在Node.js环境下,非常适合用来构建API服务。...

详细介绍一下Python如何对JSON格式数据进行处理?

在Python中对于JSON数据的处理是在日常开发中的常见需求之一。通常情况下,对JSON数据的处理主要涉及到如下的的几个步骤对于JSON数据的解析操作对于JSON数据的处理操作对于JSON数据的格式...

golang2021数据格式(69)Go语言将结构体数据保存为JSON格式数据

JSON格式是一种对象文本格式,是当前互联网最常用的信息交换格式之一。在Go语言中,可以使用json.Marshal()函数将结构体格式的数据格式化为JSON格式。想要使用json...

一个vsCode格式化插件_vscode 格式化文档

ESlint...

自己抓取家中IPTV组播地址,不用交换机或多网卡,远程抓取更方便

通过IPTV播放应用在电视、电脑或者手机观看家中的IPTV电视直播,可以摆脱IPTV机顶盒的限制,方便在家中多台电视或者手机电脑上观看IPTV电视直播。运营商IPTV的电视直播信号稳定、高清,和互联网...

扣子免费系列教程, 如何使用扣子(coze)对接飞书多维表格?

一、说明大家都知道使用扣子(coze)把一些文本内容转为小红书风格很方便。但每次都是复制粘贴。很麻烦那能不能批量呢?今天我们就来学习下,使用扣子(coze)平台完成内容的批量转换。基本思路是读取飞书多...

1024程序员节 花了三个小时调试 集合近50种常用小工具 开源项目

开篇1024是程序员节了,本来我说看个开源项目花半个小时调试之前看的一个不错的开源项目,一个日常开发常常使用的工具集,结果花了我三个小时,开源作者的开源项目中缺少一些文件,我一个个在网上找的,好多坑...

办公人必看!3分钟搞定JSON/XML/Markdown,格式转换竟如此简单!

你是不是也遇到过这些情况:领导突然甩来一份密密麻麻的数据文件,要你半小时内整理成报表;想写技术文档,却被Markdown的语法搞得头大;或者同事发来的JSON文件,打开全是“{”“}”“,”,看得眼花...

开发者必备!zerotools.top全栈效率神器

强烈建议开发者们收藏https://zerotools.top,用它来提升日常效率。一、功能覆盖:从数据到图像的全栈支持Zerotools.top的最大亮点,是其功能维度的完整性。根据最新页面...

15 个非常好用的 JSON 工具_json tools

JSON(JavaScriptObjectNotation)是一种流行的数据交换格式,已经成为许多应用程序中常用的标准。无论您是开发Web应用程序,构建API,还是处理数据,使用JSON工具可以大...

C#.NET Newtonsoft.Json 详解_c# jsonresult

简介Newtonsoft.Json(又称...