百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

如果当年这样讲MOSFET,模电不逃课(三)

haoteby 2025-01-05 17:47 8 浏览

如果当年这样讲MOSFET,模电不逃课(一)

如果当年这样讲MOSFET,模电不逃课(二)


在第二集的内容里面,我们提到了Vgs在上升的过程中,我们可以看到并不是“一帆风顺”。他会产生一个台阶。本集就讲解一下米勒平台。

这个台阶就是注明的“米勒台阶”、或者“米勒平台”

假设一个增益为-Av的理想反向电压放大器如图所示,在放大器的输出和输入端之间连接一个阻值为 Z 的阻抗。定义输入电流为 Ii(假设放大器的输入电流为 0) ,输入阻抗为 Zin,那么有如下的等式关系,


由此可见,反向电压放大器增加了电路的输入电容,并且放大系数为(1+Av) 。这个效应最早是由 John Milton Miller 发现的并发表在他 1920 的著作中,所以称之为米勒效应。


MOSFET,加入寄生电容的原理图可以由下图来表示。



MOSFET 是一个共源电路(common source) :Drain 为输出端,Source 接地,Gate为输入端。

MOS管的极间电容栅漏电容Cgd、栅源电容Cgs、漏源电容Cds可以由以下公式确定:

公式中MOS管的反馈电容Crss,输入电容Ciss和输出电容Coss的数值在MOS管的手册上可以查到。

根据 MOSFET 的小信号模型,MOSFET 形成了一个反向电压放大器,其等效电路可以表示为:

MOSFET 形成的电压放大器的增益需要根据其输出和输入电阻来判断,不同的 MOSFET 会有不同的特性,所以增益很难量化。

某些情况下其放大系数可以达到数百倍。

Cdg则形成了一条反馈回路(连接输出端口 Drain 和输入端口 Gate) ,于是在 MOSFET 中的米勒效应就形成了。


MOS开通过程我们主要看3个信号:Vgs,Vds,Id


从0时刻开始,Vgs开始上升的时候,Vds和Id保持不变,这个过程中驱动电流ig为Cgs充电,Vgs上升。一直到t1时刻,Vgs上升到Vg(th),也就是门极开启电压时候。在t1时刻以前,MOS处于截止区。

从t1时刻开始,MOS就要开始导通啦,它开始导通的标志就是Id要开始上升啦!所以MOS的漏极电流Id在慢慢上升。这个时间段内驱动电流仍然是为Cgs充电。在t1到t2的这段时间里,Id只是在安安静静的上升,到t2时刻,Id上升到电感电流。在电感电流上升的这个过程中Vds会稍微有一些下降,这是因为下降的di/dt在杂散电感上面形成一些压降,所以侧到的Vds会有一些下降。从t1时刻开始,MOS进入了饱和区。

在Id上升到最大时候(t2),即刻就进入了米勒平台时期。米勒平台就是Vgs在一段时间几乎维持不动的一个平台。前面说了,从t1时刻开始,MOS进入了饱和区,在饱和有转移特性:Id=Vgs*Gm。其中Gm是跨导。那么可以看出,只要Id不变Vgs就不变。Id在上升到最大值以后,Id就等于电感电流IL了,而此时又处于饱和区,所以Vgs就会维持不变,也就是维持米勒平台的电压。


Id为沟道电流,即上图中DS之间红色部分的电流。于是当驱动电流为Cgs充一点电,Vgs增加Δvgs,那么Id增加ΔId。于是Vds就下降,也就是Vgd会下降,那么ΔIgd=Cgd*ΔVgd/Δt,Igd就会增加,所以Vgs就几乎不能增加,只能这样动态的维持在米勒平台附近。


可以看出这是一个负反馈的过程。所以Cgd也叫反馈电容。

Vgs↑→Id↑→通过Cds为Id提供的电流↑→Vds↓→Vgd↓→Igd↑→Vgs上升斜率↓


在 t3时间之前,由于 CGS远大于 CGD,所以在此时间段内 VGS的上升斜率主要有 CGS决定。当 t3开始时,VGD的变化使得给 CGD在这个时间段内的等效电容值增加,你给电容充电,但是电容另外一端的电压却在急速变化。

Vgs要充电的电容值突然变化,导致其上升斜率受阻,形成了台阶。

在电信工业和微波电路设计领域,普遍使用MOS管控制冲击电流的方达到电流缓启动的目的。MOS管有导通阻抗Rds_on低和驱动简单的特点,在周围加上少量元器件就可以构成缓慢启动电路。虽然电路比较简单,但只有吃透MOS管的相关开关特性后才能对这个电路有深入的理解。


电子工程师通常基于栅极电荷理解MOSFET的开通的过程,如图1所示此图在MOSFET数据表中可以查到


设计中通常使用MOS管来设计缓启动电路的。MOS管有导通阻抗Rds低和驱动简单的特点,在周围加上少量元器件就可以构成缓慢启动电路。通常情况下,在正电源中用PMOS,在负电源中使用NMOS。

下图是用NMOS搭建的一个-48V电源缓启动电路,我们来分析下缓启动电路的工作原理。

1).D1是嵌位二极管,防止输入电压过大损坏后级电路;
2).R2和C1的作用是实现防抖动延时功能,实际应用中R2一般选20K欧姆,C1选4.7uF左右;
3).R1的作用是给C1提供一个快速放电通道,要求R1的分压值大于D3的稳压值,实际应用中,R1一般选10K左右;
4).R3和C2用来控制上电电流的上升斜率,实际应用中,R3一般选200K欧姆左右,C2取值为10 nF~100nF;
5).R4和R5的作用是防止MOS管自激振荡,要求R4、R5lt;<R3,R4取值一般为10~50欧姆之间,R5一般为2K欧姆;
6).嵌位二极管D3的作用是保护MOS管Q1的栅-源极不被高压击穿;D2的作用是在MOS管导通后对R2、C1构成的防抖动延时电路和R3、C2构成的上电斜率控制电路进行隔离,防止MOS栅极充电过程受C1的影响。


下面来分析下该电路的缓启动原理:
假设MOS管Q1的栅-源极间的寄生电容为Cgs,栅-漏极间的寄生电容为Cgd,漏-源极间的寄生电容为Cds,栅-漏极外部并联了电容C2 (C2gt;>Cgd),所以栅-漏极的总电容C’gd=C2+ Cgd,由于相对于C2 来说,Cgd的容值几乎可忽略不计,所以C’gd≈C2,MOS管栅极的开启电压为Vth,正常工作时,MOS管栅源电压为Vw(此电压等于稳压管D3的嵌位电压),电容C1充电的时间常数t=(R1//R2//R3)C1,由于R3通常比R1、R2大很多,所以t≈(R1//R2)C1。

下面分三个阶段来分析上述电压缓启动电路的工作原理:
第一阶段:-48V电源对C1充电,充电公式如下。
Uc=48*R1/(R1+R2)[1-exp(-T/t)],其中T是电容C1电压上升到Uc的时间,时间常数t=(R1//R2)C1。所以,从上电到MOS管开启所需要的时间为:Tth=-t*ln[1-(Uc*(R1+R2)/(48*R1))]

第二阶段:MOS管开启后,漏极电流开始增大,其变化速度跟MOS管的跨导和栅源电压变化率成正比,具体关系为:dIdrain/dt = gfm *dVgs/dt,其中gfm为MOS管的跨导,是一个固定值,Idrain为漏极电流,Vgs为MOS管的栅源电压,此期间体现为栅源电压对漏源电流的恒定控制,MOS管被归纳为压控型器件也是由此而来的。

第三阶段:当漏源电流Idrain达到最大负载电流时,漏源电压也达到饱和,同时,栅源电压进入平台期,设电压幅度为Vplt。由于这段时间内漏源电流Ids保持恒定,栅源电压Vplt=Vth+(Ids/gfm),同时,由于固定的栅源电压使栅极电流全部通过反馈电容C’gd,则栅极电流为Ig=(Vw-Vplt)/(R3+R5),由于R5相对于R3可以忽略不计,所以Ig≈(Vw-Vplt)/R3。因为栅极电流Ig≈Icgd,所以,Icgd=Cgd*dVgd/dt。由于栅源电压在这段时间内保持恒定,所以栅源电压和漏源电压的变化率相等。故有:dVds/dt=dVgd/dt=(Vw-Vplt)/(R3*C2)。


由此公式可以得知,漏源电压变化斜率与R3*C2的值有关,对于负载恒定的系统,只要控制住R3*C2的值,就能控制住热插拔冲击电流的上升斜率。

前期相关内容:

Buck电路功耗计算(一)

Buck电路功耗计算(二)

Buck电路功耗计算(三)MOSFET特性与应用

开关电源的开关管为什么选MOSFET,而非三极管
非常详细的MOSFET基础教程


关于电阻电容电感更多的知识,可以了解硬十的“无源器件篇”

相关推荐

一日一技:用Python程序将十进制转换为二进制

用Python程序将十进制转换为二进制通过将数字连续除以2并以相反顺序打印其余部分,将十进制数转换为二进制。在下面的程序中,我们将学习使用递归函数将十进制数转换为二进制数,代码如下:...

十进制转化成二进制你会吗?#数学思维

六年级奥赛起跑线:抽屉原理揭秘。同学们好,我是你们的奥耀老师。今天一起来学习奥赛起跑线第三讲二进制计数法。例一:把十进制五十三化成二进制数是多少?首先十进制就是满十进一,二进制就是满二进一。二进制每个...

二进制、十进制、八进制和十六进制,它们之间是如何转换的?

在学习进制时总会遇到多种进制转换的时候,学会它们之间的转换方法也是必须的,这里分享一下几种进制之间转换的方法,也分享两个好用的转换工具,使用它们能够大幅度的提升你的办公和学习效率,感兴趣的小伙伴记得点...

c语言-2进制转10进制_c语言 二进制转十进制

#include<stdio.h>intmain(){charch;inta=0;...

二进制、八进制、十进制和十六进制数制转换

一、数制1、什么是数制数制是计数进位的简称。也就是由低位向高位进位计数的方法。2、常用数制计算机中常用的数制有二进制、八进制、十进制和十六进制。...

二进制、十进制、八进制、十六进制间的相互转换函数

二进制、十进制、八进制、十六进制间的相互转换函数1、输入任意一个十进制的整数,将其分别转换为二进制、八进制、十六进制。2、程序代码如下:#include<iostream>usingna...

二进制、八进制、十进制和十六进制等常用数制及其相互转换

从大学开始系统的接触计算机专业,到现在已经过去十几年了,今天整理一下基础的进制转换,希望给还在上高中的表妹一个入门的引导,早日熟悉这个行业。一、二进制、八进制、十进制和十六进制是如何定义的?二进制是B...

二进制如何转换成十进制?_二进制如何转换成十进制例子图解

随着社会的发展,电器维修由继电器时代逐渐被PLC,变频器,触摸屏等工控时代所替代,特别是plc编程,其数据逻辑往往涉及到数制二进制,那么二进制到底是什么呢?它和十进制又有什么区别和联系呢?下面和朋友们...

二进制与十进制的相互转换_二进制和十进制之间转换

很多同学在刚开始接触计算机语言的时候,都会了解计算机的世界里面大多都是二进制来表达现实世界的任何事物的。当然现实世界的事务有很多很多,就拿最简单的数字,我们经常看到的数字大多都是十进制的形式,例如:我...

十进制如何转换为二进制,二进制如何转换为十进制

用十进制除以2,除的断的,商用0表示;除不断的,商用1表示余0时结束假如十进制用X表示,用十进制除以2,即x/2除以2后为整数的(除的断的),商用0表示;除以2除不断的,商用1表示除完后的商0或1...

十进制数如何转换为二进制数_十进制数如何转换为二进制数举例说明

我们经常听到十进制数和二进制数,电脑中也经常使用二进制数来进行计算,但是很多人却不清楚十进制数和二进制数是怎样进行转换的,下面就来看看,十进制数转换为二进制数的方法。正整数转二进制...

二进制转化为十进制,你会做吗?一起来试试吧

今天孩子问把二进制表示的110101改写成十进制数怎么做呀?,“二进制”简单来说就是“满二进一”,只用0和1共两个数字表示,同理我们平常接触到的“十进制”是“满十进一”,只用0-9共十个数字表示。如果...

Mac终于能正常打游戏了!苹果正逐渐淘汰Rosetta转译

Mac玩家苦转译久矣!WWDC2025苹果正式宣判Rosetta死刑,原生游戏时代终于杀到。Metal4光追和AI插帧技术直接掀桌,连Steam都连夜扛着ARM架构投诚了。看到《赛博朋克2077》...

怎么把视频的声音提出来转为音频?音频提取,11款工具实测搞定

想把视频里的声音单独保存为音频文件(MP3/AAC/WAV/FLAC)用于配音、播客、听课或二次剪辑?本文挑出10款常用工具,给出实测可复现的操作步骤、优缺点和场景推荐。1)转换猫mp3转换器(操作门...

6个mp4格式转换器测评:转换速度与质量并存!

MP4视频格式具有兼容性强、视频画质高清、文件体积较小、支持多种编码等特点,适用于网络媒体传播。如果大家想要将非MP4格式的视频转换成MP4的视频格式的话,可以使用MP4格式转换器更换格式。本文分别从...