百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

设计模式 - 七大设计原则- 迪米特法则与里氏替换原则

haoteby 2024-12-22 18:19 1 浏览

概述

简单介绍一下七大设计原则:

  1. 开闭原则 :是所有面向对象设计的核心,对扩展开放,对修改关闭
  2. 依赖倒置原则 :针对接口编程,依赖于抽象而不依赖于具体
  3. 单一职责原则 :一个接口只负责一件事情,只能有一个原因导致类变化
  4. 接口隔离原则 :使用多个专门的接口,而不是使用一个总接口
  5. 迪米特法则(最少知道原则) :只和朋友交流(成员变量、方法输入输出参数),不和陌生人说话,控制好访问修饰符
  6. 里氏替换原则 :子类可以扩展父类的功能,但不能改变父类原有的功能
  7. 合成复用原则 :尽量使用对象组合(has-a)/聚合(contanis-a),而不是继承关系达到软件复用的目的

迪米特法则

定义

迪米特原则(Law of Demeter LoD)是指一个对象应该对其他对象保持最少的了解,又 叫最少知道原则(Least Knowledge Principle,LKP),尽量降低类与类之间的耦合。

迪米特原则主要强调只和朋友交流,不和陌生人说话。出现在成员变量、方法的输入、输 出参数中的类都可以称之为成员朋友类,而出现在方法体内部的类不属于朋友类。

示例

现在来设计一个权限系统,Boss 需要查看目前发布到线上的课程数量。这时候,Boss 要找到 TeamLeader 去进行统计,TeamLeader 再把统计结果告诉 Boss。接下来我们还 是来看代码:

Course 类:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午9:17
 */
public class Course {
}

TeamLeader 类:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午9:17
 */
public class TeamLeader {
    public void checkNumberOfCourses(List<Course> courseList) {
        System.out.println("目前已发布的课程数量是:" + courseList.size());
    }
}

Boss 类:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午9:17
 */
public class Boss {
    public void commandCheckNumber(TeamLeader teamLeader) {
        //模拟 Boss 一页一页往下翻页,TeamLeader 实时统计
        List<Course> courseList = new ArrayList<Course>();
        for (int i = 0; i < 20; i++) {
            courseList.add(new Course());
        }
        teamLeader.checkNumberOfCourses(courseList);
    }
}

测试代码:

public static void main(String[] args) {
    Boss boss = new Boss();
    TeamLeader teamLeader = new TeamLeader();
    boss.commandCheckNumber(teamLeader);
}

写到这里,其实功能已经都已经实现,代码看上去也没什么问题。根据迪米特原则, Boss 只想要结果,不需要跟 Course 产生直接的交流。而 TeamLeader 统计需要引用 Course 对象。 BossCourse 并不是朋友,从下面的类图就可以看出来:

下面来对代码进行改造:

TeamLeader 类:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午9:17
 */
public class TeamLeader {
    public void checkNumberOfCourses() {
        List<Course> courseList = new ArrayList<Course>();
        for (int i = 0; i < 20; i++) {
            courseList.add(new Course());
        }
        System.out.println("目前已发布的课程数量是:" + courseList.size());
    }
}

Boss 类:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午9:17
 */
public class Boss {
    public void commandCheckNumber(TeamLeader teamLeader) {
        teamLeader.checkNumberOfCourses();
    }
}

再来看下面的类图,Course 和 Boss 已经没有关联了。

学习软件设计原则,千万不能形成强迫症。碰到业务复杂的场景,我们需要随机应变。

里氏替换原则

定义

里氏替换原则(Liskov Substitution Principle,LSP)是指如果对每一个类型为 T1 的对 象 o1,都有类型为 T2 的对象 o2,使得以 T1 定义的所有程序 P 在所有的对象 o1 都替换成 o2 时,程序 P 的行为没有发生变化,那么类型 T2 是类型 T1 的子类型。

定义看上去还是比较抽象,我们重新理解一下,可以理解为一个软件实体如果适用一个 父类的话,那一定是适用于其子类,所有引用父类的地方必须能透明地使用其子类的对象,子类对象能够替换父类对象,而程序逻辑不变。根据这个理解,我们总结一下:

引申含义:子类可以扩展父类的功能,但不能改变父类原有的功能。

  1. 子类可以实现父类的抽象方法,但不能覆盖父类的非抽象方法。
  2. 子类中可以增加自己特有的方法。
  3. 当子类的方法重载父类的方法时,方法的前置条件(即方法的输入/入参)要比父类 方法的输入参数更宽松。
  4. 当子类的方法实现父类的方法时(重写/重载或实现抽象方法),方法的后置条件(即 方法的输出/返回值)要比父类更严格或相等。

示例

在前面讲开闭原则的时候埋下了一个伏笔,我们记得在获取折后时重写覆盖了父类的 getPrice() 方法,增加了一个获取原价格的方法 getOriginPrice() ,显然就违背了里氏替换 原则。我们修改一下代码,不应该覆盖 getPrice() 方法,增加 getDiscountPrice() 方法:

/**
 * @author eamon.zhang
 * @date 2019-09-25 上午10:36
 */
public class NovelDiscountBook extends NovelBook {
    public NovelDiscountBook(String name, int price, String author) {
        super(name, price, author);
    }

    public double getDiscountPrice(){
        return super.getPrice() * 0.85;
    }
}

使用里氏替换原则有以下优点:

  1. 约束继承泛滥,开闭原则的一种体现。
  2. 加强程序的健壮性,同时变更时也可以做到非常好的兼容性,提高程序的维护性、扩 展性。降低需求变更时引入的风险。

现在来描述一个经典的业务场景,用正方形、矩形和四边形的关系说明里氏替换原则, 我们都知道正方形是一个特殊的长方形,那么就可以创建一个长方形父类 Rectangle 类:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午9:59
 */
public class Rectangle {
    private long height;
    private long width;

    public long getHeight() {
        return height;
    }

    public void setHeight(long height) {
        this.height = height;
    }

    public long getWidth() {
        return width;
    }

    public void setWidth(long width) {
        this.width = width;
    }
}

创建正方形 Square 类继承长方形:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午10:01
 */
public class Square extends Rectangle {
    private long length;

    public long getLength() {
        return length;
    }

    public void setLength(long length) {
        this.length = length;
    }

    @Override
    public long getHeight() {
        return super.getHeight();
    }

    @Override
    public void setHeight(long height) {
        super.setHeight(height);
    }

    @Override
    public long getWidth() {
        return super.getWidth();
    }

    @Override
    public void setWidth(long width) {
        super.setWidth(width);
    }
}

在测试类中创建 resize() 方法,根据逻辑长方形的宽应该大于等于高,我们让高一直自增, 知道高等于宽变成正方形:

public static void resize(Rectangle rectangle) {
    while (rectangle.getWidth() >= rectangle.getHeight()) {
        rectangle.setHeight(rectangle.getHeight() + 1);
        System.out.println("width:" + rectangle.getWidth() + ",height:" + rectangle.getHeight());
    }
    System.out.println("resize 方法结束" +
            "\nwidth:" + rectangle.getWidth() + ",height:" + rectangle.getHeight());
}

测试代码:

public static void main(String[] args) {
    Rectangle rectangle = new Rectangle();
    rectangle.setWidth(20);
    rectangle.setHeight(10);
    resize(rectangle);
}

运行结果:

发现高比宽还大了,在长方形中是一种非常正常的情况。现在我们再来看下面的代码, 把长方形 Rectangle 替换成它的子类正方形 Square ,修改测试代码:

public static void main(String[] args) {
    Square square = new Square();
    square.setLength(10);
    resize(square);
}

这时候我们运行的时候就出现了死循环,违背了里氏替换原则,将父类替换为子类后, 程序运行结果没有达到预期。因此,我们的代码设计是存在一定风险的。里氏替换原则 只存在父类与子类之间,约束继承泛滥。我们再来创建一个基于长方形与正方形共同的 抽象四边形 Quadrangle 接口:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午10:12
 */
public interface Quadrangle {
    long getWidth();

    long getHeight();
}

修改长方形 Rectangle 类:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午9:59
 */
public class Rectangle implements Quadrangle {
    private long height;
    private long width;

    @Override
    public long getWidth() {
        return width;
    }

    public long getHeight() {
        return height;
    }

    public void setHeight(long height) {
        this.height = height;
    }

    public void setWidth(long width) {
        this.width = width;
    }
}

修改正方形类 Square 类:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午10:01
 */
public class Square implements Quadrangle {
    private long length;

    public long getLength() {
        return length;
    }

    public void setLength(long length) {
        this.length = length;
    }

    @Override
    public long getWidth() {
        return length;
    }

    @Override
    public long getHeight() {
        return length;
    }
}

此时,如果我们把 resize() 方法的参数换成四边形 Quadrangle 类,方法内部就会报错。

因为正方形 Square 已经没有了 setWidth()setHeight() 方法了。因此,为了约束继承 泛滥, resize() 的方法参数只能用 Rectangle 长方形。当然,我们在后面的设计模式系列文章中 中还会继续深入讲解。

相关推荐

单点登录(SSO)解决方案介绍(单点登录概念)

一、单点登录的介绍单点登录(SingleSignOn),简称为SSO,是目前比较流行的企业业务整合的解决方案之一。SSO的定义是在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系...

系统登录的三种方式,哪一种更安全?

登录是一个高频的动作,笔者抓住这一个小点,分析了系统登录的几种方式和对应的场景。今天谈谈登录。登录即用户输入用户名和密码登录进系统中。B端系统,对于登录的业务场景有两种(可能不止,目前遇到过这两种):...

到底什么是单点登录(SSO)?(什么叫做单点登录)

什么是单点登录?单点登录(SingleSign-On,简称SSO)是一种集中式的身份验证和授权机制,用户只需在一处输入一次凭证(例如用户名和密码)就可以访问多个相关但独立的软件系统。在数字化时代,...

5年稳如老狗的单点登录系统,到底是怎么搞出来的?

说到单点登录(SingleSign-On,简称SSO),大家的第一反应可能是——啊不就是登录一次,能到处串门儿嘛?别说,还真差不多,就是这么个意思。但真要搭一套好用、耐造、还能扛住公司里各种奇奇怪...

这些负载均衡都解决哪些问题?服务、网关、NGINX?

在微服务项目中,有服务的负载均衡、网关的负载均衡、Nginx的负载均衡,这几个负载均衡分别用来解决什么问题呢?一、服务的负载均衡先抛出一个问题:...

Nginx负载均衡最全详解(4大算法原理机制)

Nginx在大型网站架构很重要,也是大厂重点考察方向,今天我就重点来详解Nginx负载均衡@mikechen本篇已收于mikechen原创超30万字《阿里架构师进阶专题合集》里面。Nginx负载均衡N...

负载均衡 Nginx Session 一致性(nginx 负载均衡 会话保持)

HTTPS请求跳转...

监控Oracle Cloud负载均衡器:Applications Manager释放最佳性能

设想你正在运营一个受欢迎的在线学习平台,在考试前的高峰期,平台流量激增。全球的学生同时登录,观看视频、提交作业和参加测试。如果OracleCloud负载均衡器不能高效地分配流量,或者后端服务器难...

Nginx负载均衡:nginx.conf配置文件说明!

大家好,欢迎来到程序视点!我是你们的老朋友.小二!在此记录下Nginx服务器nginx.conf负载均衡的配置文件说明,部分注释收集与网络.关于nginx.conf基本的配置,请查看上一篇文章!Ng...

Java高可用系统架构中的负载均衡策略

Java高可用系统架构中的负载均衡策略在现代的分布式系统中,负载均衡策略是构建高可用系统的基石。Java开发者需要深刻理解这些策略,以便打造稳定且高效的系统。接下来,让我们一起揭开负载均衡的神秘面纱。...

深入对比Nginx、LVS和HAProxy,选择最合适负载均衡方案!

关注...

Spring Boot3 客户端负载均衡全解析:从原理到实战

在当今互联网大厂后端技术开发的激烈竞争环境中,构建高效、稳定的微服务架构是核心诉求。其中,SpringBoot3作为热门开发框架,其客户端负载均衡功能对于提升系统性能、保障服务稳定性起着关键作用。...

MySql高可用集群MySQL Router负载均衡读写分离

名词解释MGR:MysqlGroupReplication组复制,多台MySQL服务器在同一组中会自动保持同步状态,当某台服务器故障时,整个复制组依然可以保持正常并对外提供服务。...

性能测试之tomcat+nginx负载均衡(nginx tomcat)

nginxtomcat配置准备工作:两个tomcat执行命令cp-rapache-tomcat-8.5.56apache-tomcat-8.5.56_2修改被复制的tomcat2下con...

win10/11双网卡链路聚合叠加负载均衡提升网速解决网卡网速瓶颈!

双网卡链路聚合一种网络配置技术,通过将多个物理网卡绑定在一起,形成一个逻辑上的网络接口,以提高网络的可靠性、可用性和性能。这种技术通常用于服务器和网络设备中,以实现负载均衡、冗余和高可用性。本机环境:...