百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Pandas:让你像写SQL一样做数据分析

haoteby 2025-05-24 14:20 31 浏览

1. 引言

Pandas是一个开源的Python数据分析库。Pandas把结构化数据分为了三类:

  • Series,1维序列,可视作为没有column名的、只有一个column的DataFrame;
  • DataFrame,同Spark SQL中的DataFrame一样,其概念来自于R语言,为多column并schema化的2维结构化数据,可视作为Series的容器(container);
  • Panel,为3维的结构化数据,可视作为DataFrame的容器;

DataFrame较为常见,因此本文主要讨论内容将为DataFrame。DataFrame的生成可通过读取纯文本、Json等数据来生成,亦可以通过Python对象来生成:

import pandas as pd
import numpy as np


df = pd.DataFrame({'total_bill': [16.99, 10.34, 23.68, 23.68, 24.59],
 'tip': [1.01, 1.66, 3.50, 3.31, 3.61],
 'sex': ['Female', 'Male', 'Male', 'Male', 'Female']})

对于DataFrame,我们可以看到其固有的一些属性:

# data type of columns
print df.dtypes
# indexes
print df.index
# return pandas.Index
print df.columns
# each row, return array[array]
print df.values
  • index,为行索引
  • columns,为列名称(label)
  • dtype,为列数据类型

2. SQL操作

官方Doc给出了部分SQL的Pandas实现。在此基础上,本文给出了一些扩充说明。以下内容基于Python 2.7 + Pandas 0.18.1的版本。

select

SQL中的select是根据列的名称来选取;Pandas则更为灵活,不但可根据名称选取,还可以根据列所在的position选取。相关函数如下:

  • loc,基于列label,可选取特定行(根据行index);
  • iloc,基于行/列的position;
print df.loc[1:3, ['total_bill', 'tip']]
print df.loc[1:3, 'tip': 'total_bill']
print df.iloc[1:3, [1, 2]]
print df.iloc[1:3, 1: 3]
  • at,根据指定行index及列label,快速定位DataFrame的元素;
  • iat,与at类似,不同的是根据position来定位的;
print df.at[3, 'tip']
print df.iat[3, 1]
  • ix,loc与iloc的混合体,既支持label也支持position;
print df.ix[1:3, [1, 2]]
print df.ix[1:3, ['total_bill', 'tip']]

为了做行/列的选取,有更为简洁的表示:

print df[1: 3]
print df[['total_bill', 'tip']]
# print df[1:2, ['total_bill', 'tip']]  # TypeError: unhashable type

where

Pandas实现where filter,较为常用的办法为df[df[colunm] boolean expr],比如:

print df[df['sex'] == 'Female']
print df[df['total_bill'] > 20]

# or
print df.query('total_bill > 20')

在where子句中常常会搭配and, or, in, not关键词,Pandas中也有对应的实现:

# and
print df[(df['sex'] == 'Female') & (df['total_bill'] > 20)]
# or
print df[(df['sex'] == 'Female') | (df['total_bill'] > 20)]
# in
print df[df['total_bill'].isin([21.01, 23.68, 24.59])]
# not
print df[-(df['sex'] == 'Male')]
print df[-df['total_bill'].isin([21.01, 23.68, 24.59])]

distinct

drop_duplicates根据某列对dataframe进行去重:

df.drop_duplicates(subset=['sex'], keep='first', inplace=True)

包含参数:

  • subset,为选定的列做distinct,默认为所有列;
  • keep,值选项{'first', 'last', False},保留重复元素中的第一个、最后一个,或全部删除;
  • inplace ,默认为False,返回一个新的dataframe;若为True,则返回去重后的原dataframe

group

group一般会配合合计函数(Aggregate functions)使用,比如:count、avg等。Pandas对合计函数的支持有限,有count和size函数实现SQL的count:

print df.groupby('sex').size
print df.groupby('sex').count
print df.groupby('sex')['tip'].count

对于多合计函数,

select sex, max(tip), sum(total_bill) as total
from tip_tb
group by sex;

实现在agg函数中指定dict:

print df.groupby('sex').agg({'tip': np.max, 'total_bill': np.sum})

# distinct count
print df.groupby('tip').agg({'sex': pd.Series.nunique})

as

SQL中使用as修改列的别名,Pandas也支持这种修改:

# first implementation
df.columns = ['total', 'pit', 'xes']
# second implementation
df.rename(columns={'total_bill': 'total', 'tip': 'pit', 'sex': 'xes'}, inplace=True)

我们容易发现,第一种方法的修改是有问题的,因为其是按照列position逐一替换的。因此,我们推荐第二种方法。

join

Pandas中join的实现也有两种:

# 1.
df.join(df2, how='left'...)

# 2. 
pd.merge(df1, df2, how='left', left_on='app', right_on='app')

第一种方法是按DataFrame的index进行join的,而第二种方法才是按on指定的列做join。Pandas满足left、right、inner、full outer四种join方式。

order

Pandas中支持多列order,并可以调整不同列的升序/降序,而不需统一指定desc/asc:

print df.sort_values(['total_bill', 'tip'], ascending=[False, True])

top

对于全局的top:

print df.nlargest(3, columns=['total_bill'])

对于分组top,MySQL的实现(采用自join的方式):

select a.sex, a.tip
from tips_tb a
where (
    select count(*)
    from tips_tb b
    where b.sex = a.sex and b.tip > a.tip
) < 2
order by a.sex, a.tip desc;

Pandas的等价实现,思路与上类似:

# 1.
df.assign(rn=df.sort_values(['total_bill'], ascending=False)
 .groupby('sex')
 .cumcount+1)\
    .query('rn < 3')\
    .sort_values(['sex', 'rn'])
    
# 2.
df.assign(rn=df.groupby('sex')['total_bill']
 .rank(method='first', ascending=False)) \
    .query('rn < 3') \
    .sort_values(['sex', 'rn'])

自定义

除了上述SQL操作外,Pandas提供对每列/每一元素做自定义操作,为此而设计以下三个函数:

  • map(func),为Series的函数,DataFrame不能直接调用,需取列后再调用;
  • apply(func),对DataFrame中的某一行/列进行func操作;
  • applymap(func),为element-wise函数,对每一个元素做func操作
print df['tip'].map(lambda x: x - 1)
print df[['total_bill', 'tip']].apply(sum)
print df.applymap(lambda x: x.upper if type(x) is str else x)

3. 实战

环比增长

现有两个月APP的UV数据,要得到月UV增长量;等价于两个Dataframe left join后按指定列做减操作:

def chain(current, last):
    df1 = pd.read_csv(current, names=['app', 'tag', 'uv'], sep='\t')
    df2 = pd.read_csv(last, names=['app', 'tag', 'uv'], sep='\t')
    df3 = pd.merge(df1, df2, how='left', on='app')
    df3['uv_y'] = df3['uv_y'].map(lambda x: 0.0 if pd.isnull(x) else x)
    df3['growth'] = df3['uv_x'] - df3['uv_y']
    return df3[['app', 'growth', 'uv_x', 'uv_y']].sort_values(by='growth', ascending=False)

差集

对于给定的列,一个Dataframe过滤另一个Dataframe该列的值;相当于集合的差集操作:

def difference(left, right, on):
    """
    difference of two dataframes
    :param left: left dataframe
    :param right: right dataframe
    :param on: join key
    :return: difference dataframe
    """
    df = pd.merge(left, right, how='left', on=on)
    left_columns = left.columns
    col_y = df.columns[left_columns.size]
    df = df[df[col_y].isnull]
    df = df.ix[:, 0:left_columns.size]
    df.columns = left_columns
    return df

相关推荐

一日一技:用Python程序将十进制转换为二进制

用Python程序将十进制转换为二进制通过将数字连续除以2并以相反顺序打印其余部分,将十进制数转换为二进制。在下面的程序中,我们将学习使用递归函数将十进制数转换为二进制数,代码如下:...

十进制转化成二进制你会吗?#数学思维

六年级奥赛起跑线:抽屉原理揭秘。同学们好,我是你们的奥耀老师。今天一起来学习奥赛起跑线第三讲二进制计数法。例一:把十进制五十三化成二进制数是多少?首先十进制就是满十进一,二进制就是满二进一。二进制每个...

二进制、十进制、八进制和十六进制,它们之间是如何转换的?

在学习进制时总会遇到多种进制转换的时候,学会它们之间的转换方法也是必须的,这里分享一下几种进制之间转换的方法,也分享两个好用的转换工具,使用它们能够大幅度的提升你的办公和学习效率,感兴趣的小伙伴记得点...

c语言-2进制转10进制_c语言 二进制转十进制

#include<stdio.h>intmain(){charch;inta=0;...

二进制、八进制、十进制和十六进制数制转换

一、数制1、什么是数制数制是计数进位的简称。也就是由低位向高位进位计数的方法。2、常用数制计算机中常用的数制有二进制、八进制、十进制和十六进制。...

二进制、十进制、八进制、十六进制间的相互转换函数

二进制、十进制、八进制、十六进制间的相互转换函数1、输入任意一个十进制的整数,将其分别转换为二进制、八进制、十六进制。2、程序代码如下:#include<iostream>usingna...

二进制、八进制、十进制和十六进制等常用数制及其相互转换

从大学开始系统的接触计算机专业,到现在已经过去十几年了,今天整理一下基础的进制转换,希望给还在上高中的表妹一个入门的引导,早日熟悉这个行业。一、二进制、八进制、十进制和十六进制是如何定义的?二进制是B...

二进制如何转换成十进制?_二进制如何转换成十进制例子图解

随着社会的发展,电器维修由继电器时代逐渐被PLC,变频器,触摸屏等工控时代所替代,特别是plc编程,其数据逻辑往往涉及到数制二进制,那么二进制到底是什么呢?它和十进制又有什么区别和联系呢?下面和朋友们...

二进制与十进制的相互转换_二进制和十进制之间转换

很多同学在刚开始接触计算机语言的时候,都会了解计算机的世界里面大多都是二进制来表达现实世界的任何事物的。当然现实世界的事务有很多很多,就拿最简单的数字,我们经常看到的数字大多都是十进制的形式,例如:我...

十进制如何转换为二进制,二进制如何转换为十进制

用十进制除以2,除的断的,商用0表示;除不断的,商用1表示余0时结束假如十进制用X表示,用十进制除以2,即x/2除以2后为整数的(除的断的),商用0表示;除以2除不断的,商用1表示除完后的商0或1...

十进制数如何转换为二进制数_十进制数如何转换为二进制数举例说明

我们经常听到十进制数和二进制数,电脑中也经常使用二进制数来进行计算,但是很多人却不清楚十进制数和二进制数是怎样进行转换的,下面就来看看,十进制数转换为二进制数的方法。正整数转二进制...

二进制转化为十进制,你会做吗?一起来试试吧

今天孩子问把二进制表示的110101改写成十进制数怎么做呀?,“二进制”简单来说就是“满二进一”,只用0和1共两个数字表示,同理我们平常接触到的“十进制”是“满十进一”,只用0-9共十个数字表示。如果...

Mac终于能正常打游戏了!苹果正逐渐淘汰Rosetta转译

Mac玩家苦转译久矣!WWDC2025苹果正式宣判Rosetta死刑,原生游戏时代终于杀到。Metal4光追和AI插帧技术直接掀桌,连Steam都连夜扛着ARM架构投诚了。看到《赛博朋克2077》...

怎么把视频的声音提出来转为音频?音频提取,11款工具实测搞定

想把视频里的声音单独保存为音频文件(MP3/AAC/WAV/FLAC)用于配音、播客、听课或二次剪辑?本文挑出10款常用工具,给出实测可复现的操作步骤、优缺点和场景推荐。1)转换猫mp3转换器(操作门...

6个mp4格式转换器测评:转换速度与质量并存!

MP4视频格式具有兼容性强、视频画质高清、文件体积较小、支持多种编码等特点,适用于网络媒体传播。如果大家想要将非MP4格式的视频转换成MP4的视频格式的话,可以使用MP4格式转换器更换格式。本文分别从...