项目分享|仅需1板卡+1摄像头,3步完成人脸喜怒哀乐识别
haoteby 2025-05-02 18:29 13 浏览
使用 OpenCV、TensorFlow 和 Keras ,基于 Raspberry Pi 进行情绪识别,你的心情一览无余。
面部表情识别系统可用于多种应用,可以用来研究或分析人的情绪。许多公司正在植入面部表情识别系统来研究员工的抑郁程度。游戏公司也可以应用面部识别系统来记录游戏玩家在游戏过程中的满意度。
下面就是教大家如何在Raspberry Pi 4 上实现应用预训练模型从实时视频流中识别人的面部表情。
在树莓派上执行面部表情识别的步骤
要在树莓派上实现表情识别,仅需下面三个步骤。
第1步:检测输入视频流中的人脸。
第2步:找到人脸的感兴趣区域 (ROI)。
第3步:面部表情识别模型来预测人的表情。
本项目中使用六个类别,即“愤怒”、“恐惧”、“快乐”、“中性”、“悲伤”、“惊喜”,预测的图像将属于这些类别。
面部表情识别所需的组件
项目涉及的硬件非常少,只需要2个即可: 树莓派4和Pi摄像机模块,并在Raspberry Pi上安装OpenCV。OpenCV 在这里用于数字图像处理,最常见的应用是物体检测、人脸识别和人数统计。
在树莓派 4 上安装 OpenCV
在安装 OpenCV 和其他依赖项之前,Raspberry Pi 需要完全更新。使用以下命令将 Raspberry Pi 更新到最新版本:
sudo apt-get 更新
然后使用以下命令在 Raspberry Pi 上安装 OpenCV 所需的依赖项。
sudo apt-get install libhdf5-dev -y
sudo apt-get install libhdf5-serial-dev –y
sudo apt-get install libatlas-base-dev –y
sudo apt-get install libjasper-dev -y
sudo apt-get install libqtgui4 –y
sudo apt-get install libqt4-test –y
之后,使用下面的命令在Raspberry Pi 上安装 OpenCV。
pip3 install opencv-contrib-python==4.1.0.25
在树莓派 4 上安装 TensorFlow 和 Keras
在安装 Tensorflow 和 Keras 之前,请安装以下提到的所需库。
sudo apt-get install python3-numpy
sudo apt-get install libblas-dev
sudo apt-get install liblapack-dev
sudo apt-get install python3-dev
sudo apt-get install libatlas-base-dev
sudo apt-get install gfortran
sudo apt-get install python3-setuptools
sudo apt-get install python3-scipy
sudo apt-get update
sudo apt-get install python3-h5py
Tensorflow 和 Keras 库可以通过在终端中使用 pip(如果将 python3 作为 raspberry pi 上的默认 python 环境,则使用 pip3 命令)命令安装。
pip3 install tensorflow
pip3 install keras
为面部表情识别编程 Raspberry Pi
下面将解释代码的重要部分,以便更好地理解。下载的项目文件夹包含一个子文件夹 (Haarcascades)、一个 Python 文件 (emotion1.py) 和模型 (ferjj.h5)。
通过导入下面提到的重要数据包来启动代码。
注意:这里使用TensorFlow API来导入Keras库。
from tensorflow.keras import Sequential
from tensorflow.keras.models import load_model
import cv2
import numpy as np
from tensorflow.keras.preprocessing.image import img_to_array
接下来,是使用从 Keras 库导入的load_model()函数加载预训练模型(在项目文件夹中提供) 。在下一行中,创建一个labels并将标签分配给 6 个类。
# We have 6 labels for the model
class_labels = {0: 'Angry', 1: 'Fear', 2: 'Happy', 3: 'Neutral', 4: 'Sad', 5: 'Surprise'}
classes = list(class_labels.values())
# print(class_labels)
嵌入式物联网需要学的东西真的非常多,千万不要学错了路线和内容,导致工资要不上去!
无偿分享大家一个资料包,差不多150多G。里面学习内容、面经、项目都比较新也比较全!某鱼上买估计至少要好几十。
点击这里找小助理0元领取:嵌入式物联网学习资料(头条)
现在,Haarcascade 分类器的路径是通过使用OpenCV 库中的CascadeClassifier()函数提供的。
face_classifier = cv2.CascadeClassifier('./Haarcascades/haarcascade_frontalface_default.xml')
text_on_detected_boxes ()函数可用于设计检测到的人脸的输出标签。text_on_detected_boxes()的参数已经有了它们的默认值,可以根据需要更改这些值。
# This function is for designing the overlay text on the predicted image boxes.
def text_on_detected_boxes(text,text_x,text_y,image,font_scale = 1,
font = cv2.FONT_HERSHEY_SIMPLEX,
FONT_COLOR = (0, 0, 0),
FONT_THICKNESS = 2,
rectangle_bgr = (0, 255, 0)):
在图像上测试我们的面部表情识别:
在face_detector_image(img)函数中, cvtColor()函数用于将输入图像转换为灰度。如下所示,此处拍摄的示例图像被转换为灰度。
然后从图像中提取人脸的感兴趣区域 ( ROI )。该函数返回三个重要因素,即人脸的 ROI、人脸的坐标和原始图像。已在检测到的面部上绘制了一个矩形。将图像转换为灰度并在我们的 ROI 周围绘制一个框的代码如下所示:
def face_detector_image(img):
gray = cv2.cvtColor(img.copy(), cv2.COLOR_BGR2GRAY) # Convert the image into GrayScale image
faces = face_classifier.detectMultiScale(gray, 1.3, 5)
if faces is ():
return (0, 0, 0, 0), np.zeros((48, 48), np.uint8), img
allfaces = []
rects = []
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
roi_gray = gray[y:y + h, x:x + w]
roi_gray = cv2.resize(roi_gray, (48, 48), interpolation=cv2.INTER_AREA)
allfaces.append(roi_gray)
rects.append((x, w, y, h))
return rects, allfaces, img
在程序的这一部分中,通过提供 ROI 值来应用模型。函数下的前两行用于获取输入图像并将其传递给face_detector_image(img)函数,如上一节所述。
def emotionImage(imgPath):
img = cv2.imread(imgPath)
rects, faces, image = face_detector_image(img)
i = 0
for face in faces:
roi = face.astype("float") / 255.0
roi = img_to_array(roi)
roi = np.expand_dims(roi, axis=0)
# make a prediction on the ROI, then lookup the class
preds = classifier.predict(roi)[0]
label = class_labels[preds.argmax()]
label_position = (rects[i][0] + int((rects[i][1] / 2)), abs(rects[i][2] - 10))
i = + 1
# Overlay our detected emotion on the picture
text_on_detected_boxes(label, label_position[0],label_position[1], image)
cv2.imshow("Emotion Detector", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
预测后,输出结果与检测到的人脸一起显示。输出结果显示在我们之前创建的class_labels中。使用text_on_detected_boxes()函数来设计检测到的面部上的标签。imshow ()函数用于显示窗口。
视频流上的面部表情识别:
face_detector_video (img)函数用于检测视频流上的人脸。我们将输入帧作为图像提供给此函数。此函数返回检测到的人脸的坐标、人脸的感兴趣区域 (ROI)和原始帧。rectangle()函数用于在检测到的面上绘制一个重叠的矩形。
def face_detector_video(img):
# Convert image to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_classifier.detectMultiScale(gray, 1.3, 5)
if faces is ():
return (0, 0, 0, 0), np.zeros((48, 48), np.uint8), img
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), thickness=2)
roi_gray = gray[y:y + h, x:x + w]
roi_gray = cv2.resize(roi_gray, (48, 48), interpolation=cv2.INTER_AREA)
return (x, w, y, h), roi_gray, img
在本节中,将应用我们的模型来识别视频流上的表达,并在视频流上实时显示预测输出。
在前两行中,我们从输入视频流中提取一帧。然后,将帧输入face_detector_video(frame)函数。现在,分类器中的predict()函数用于预测检测到的人脸的表情。然后我们为脸上的每个预测分配class_labels。现在,imshow()用于在每个面上显示带有已识别表情的窗口。
def emotionVideo(cap):
while True:
ret, frame = cap.read()
rect, face, image = face_detector_video(frame)
if np.sum([face]) != 0.0:
roi = face.astype("float") / 255.0
roi = img_to_array(roi)
roi = np.expand_dims(roi, axis=0)
# make a prediction on the ROI, then lookup the class
preds = classifier.predict(roi)[0]
label = class_labels[preds.argmax()]
label_position = (rect[0] + rect[1]//50, rect[2] + rect[3]//50)
text_on_detected_boxes(label, label_position[0], label_position[1], image) # You can use this function for your another opencv projects.
fps = cap.get(cv2.CAP_PROP_FPS)
cv2.putText(image, str(fps),(5, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
else:
cv2.putText(image, "No Face Found", (5, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
cv2.imshow('All', image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
这是代码的主要功能。在主函数中可以使用emotionVideo()函数和emotionImage()函数。如果想在图像上使用面部表情识别,那么只需注释主函数的前两行并取消注释其余两行。但请确保在IMAGE_PA TH 变量中提供输入图像的路径。
if __name__ == '__main__':
camera = cv2.VideoCapture(0) # If you are using an USB Camera then Change use 1 instead of 0.
emotionVideo(camera)
# IMAGE_PATH = "provide the image path"
# emotionImage(IMAGE_PATH) # If you are using this on an image please provide the path
在 Raspberry Pi 上测试我们的面部表情识别系统
在启动 Python 脚本之前,将 Raspberry Pi 相机模块与 Pi 连接,如下所示:
现在,检查 Pi 相机是否正常工作。查看相机后,启动 Python 脚本,会发现弹出一个窗口,其中包含视频源。一旦 Pi 检测到表达式,它将以绿色框显示在视频源上。
原文链接:
https://mp.weixin.qq.com/s/WiBbZZoYNBeYYoJdZ2NRIQ文章转载自:达尔闻说
文章来源于:项目分享| 仅需1板卡+1摄像头,3步完成人脸喜怒哀乐识别
版权声明:本文来源于网络,免费传达知识,版权归原作者所有,如涉及作品版权问题,请联系我进行删除
相关推荐
- 网站seo该怎么优化
-
一、网站定位在建设一个网站之前,我们首先要做的就是一个网站清晰的定位,会带来转化率相对较高的客户群体,我们建站的目的就是为了营销,只有集中来做某一件事,才会更好的展现我们的网站。在做SEO优化的同时...
- 3个小技巧教你如何做好SEO优化
-
想半路出家做SEO?可是,怎么才做的好呢?关于SEO专业技术弄懂搜索引擎原理,咱们做搜索引擎排名的首先就是要了解搜索引擎的工作原理,对SEO优化有更深入了解之后再来做SEO,你就能从搜索引擎的视点...
- SEO指令分享:filetype指令
-
filetype用于搜索特定的文件格式。百度和谷歌都支持filetype指令。比如搜索filetype:pdf今日头条返回的就是包含今日头条这个关键词的所有pdf文件,如下图:百度只支持:pdf...
- 网站seo优化技巧大全
-
SEO在搜索引擎中对检索结果进行排序,看谁最初是在用户的第一眼中看到的。实际上,这些排名都是通过引擎的内部算法来实现的。例如,百度算法很有名。那么,对百度SEO的优化有哪些小技巧?下面小编就会说下针对...
- 小技巧#10 某些高级的搜索技巧
-
由于某些原因,我的实验场所仅限百度。1.关键词+空格严格说来这个不能算高级,但关键词之间打空格的办法确实好用。我习惯用右手大拇指外侧敲击空格键,这个习惯在打英文报告时尤其频繁。2.site:(请不要忽...
- MYSQL数据库权限与安全
-
权限与安全数据库的权限和数据库的安全是息息相关的,不当的权限设置可能会导致各种各样的安全隐患,操作系统的某些设置也会对MySQL的安全造成影响。1、权限系统的工作原理...
- WPF样式
-
UniformGrid容器<UniformGridColumns="3"Rows="3"><Button/>...
- MySQL学到什么程度?才有可以在简历上写精通
-
前言如今互联网行业用的最多就是MySQL,然而对于高级Web面试者,尤其对于寻找30k下工作的求职者,很多MySQL相关知识点基本都会涉及,如果面试中,你的相关知识答的模糊和不切要点,基...
- jquery的事件名称和命名空间的方法
-
我们先看一些代码:当然,我们也可以用bind进行事件绑定。我们看到上面的代码,我们可以在事件后面,以点号,加我们的名字,就是事件命名空间。所谓事件命名空间,就是事件类型后面以点语法附加一个别名,以便引...
- c#,委托与事件,发布订阅模型,观察者模式
-
什么是事件?事件(Event)基本上说是一个用户操作,如按键、点击、鼠标移动等等,或者是一些提示信息,如系统生成的通知。应用程序需要在事件发生时响应事件。通过委托使用事件事件在类中声明且生成,且通过...
- 前端分享-原生Popover已经支持
-
传统网页弹窗开发需要自己处理z-index层级冲突、编写点击外部关闭的逻辑、管理多个弹窗的堆叠顺序。核心优势对比:...
- Axure 8.0 综合帖——新增细节内容
-
一、钢笔工具与PS或者AI中的钢笔工具一样的用法。同样有手柄和锚点,如果终点和起点没有接合在一起,只要双击鼠标左键即可完成绘画。画出来的是矢量图,可以理解为新的元件。不建议通过这个工具来画ICON图等...
- PostgreSQL技术内幕28:触发器实现原理
-
0.简介在PostgreSQL(简称PG)数据库中,触发器(Trigger)能够在特定的数据库数据变化事件(如插入、更新、删除等)或数据库事件(DDL)发生时自动执行预定义的操作。触发器的实现原理涉及...
- UWP开发入门(十七)--判断设备类型及响应VirtualKey
-
蜀黍我做的工作跟IM软件有关,UWP同时会跑在电脑和手机上。电脑和手机的使用习惯不尽一致,通常我倾向于根据窗口尺寸来进行布局的变化,但是特定的操作习惯是依赖于设备类型,而不是屏幕尺寸的,比如聊天窗口的...