百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

进程管理|Linux内核进程调度与时钟中断详解

haoteby 2025-01-11 13:23 5 浏览

一,进程调度

在Linux内核中通常有几十或者上百个进程在运行, 但个人电脑的CPU一般也只有双核或者四核, CPU的一个核在某一时刻只能运行一个进程, 所以有四个核的CPU只能同时运行4个进程, 那么Linux内核怎么可以运行比CPU核数量多的进程呢? 这里就涉及到一个名字叫进程运行时间片 的概念.进程运行时间片 是让每个进程在CPU中运行一段指定的时间(时间片), 当某一个进程的时间片用完后, 由Linux内核切换到其他时间片还没用完的进程运行. 进程管理结构 task_struct 中间有个保存着时间片的字段counter , 如下:

struct task_struct {
...
volatile long need_resched;
...
long counter;
...
};

二,时钟中断

有了时间片的概念后, 进程就不能为所欲为的占用CPU了. 但这里有个问题, 就是进程的时间片不会自己减少的,那么应该由谁来将进程的时间片减少呢? 答案就是 时钟中断 程序( 中断处理 在后面会介绍, 所以这里不会对中断处理 作详细的介绍).时钟中断 是指每隔一段相同的时间, 都会发出一个中断信号(称为一个tick, 由8253芯片触发), CPU接受到中断信号后触发内核中相应的中断处理程序. 当 时钟中断 发生时会调用 timer_interrupt() 函数来处理中断,timer_interrupt() 函数源码如下:

static void timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
int count;
write_lock(&xtime_lock);
...
do_timer_interrupt(irq, NULL, regs);
write_unlock(&xtime_lock);
}
static inline void do_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
...
do_timer(regs);
...
if ((time_status & STA_UNSYNC) == 0 &&
xtime.tv_sec > last_rtc_update + 660 &&
xtime.tv_usec >= 500000 - ((unsigned) tick) / 2 &&xtime.tv_usec <= 500000 + ((unsigned) tick) / 2) {
if (set_rtc_mmss(xtime.tv_sec) == 0)
last_rtc_update = xtime.tv_sec;
else
last_rtc_update = xtime.tv_sec - 600;
}
...
}

从上面的代码可以看到, timer_interrupt() 函数会调用 do_timer_interrupt() 函数, 而do_timer_interrupt() 函数最终会调用 do_timer() , do_timer() 函数是时钟中断处理事件的主要逻辑,源码如下:

void do_timer(struct pt_regs *regs)
{
(*(unsigned long *)&jiffies)++;
#ifndef CONFIG_SMP
/* SMP process accounting uses the local APIC timer */
update_process_times(user_mode(regs));
#endif
mark_bh(TIMER_BH);
if (TQ_ACTIVE(tq_timer))
mark_bh(TQUEUE_BH);
}

do_timer() 函数主要调用 update_process_times() 函数更新进程的时间片, 代码如下:

void update_process_times(int user_tick)
{
struct task_struct *p = current;
...
if (p->pid) {
if (--p->counter <= 0) {
p->counter = 0;
p->need_resched = 1;
}
...
}
...
}

从上面的代码可以看出, 每次时钟中断发生都会将当前进程的时间片减一, 当时间片用完后会设置进程的need_resched 字段为1(表示需要调用当前进程)这里有个问题, 就是时钟中断只是把进程的 need_resched 字段设置为1而已, 并没有对进程进行调度啊, 那什么时候才会对进程进行调度呢? 答案是从内核态返回到用户态的时候

从内核态返回到用户态有几个时机:

  • 1. 中断处理完成后返回.
  • 2. 异常处理完成后返回.
  • 3. 系统调用完成后返回.

譬如, 当用户进程调用系统调用返回时, 调用以下的汇编代码:

ENTRY(ret_from_sys_call)
...
ret_with_reschedule:
cmpl $0,need_resched(%ebx) // 判断当前进程的 need_resched 字段是否为1
jne reschedule // 如果是, 就跳到reschedule处执行
cmpl $0,sigpending(%ebx)
jne signal_return
restore_all:
RESTORE_ALL // 返回到用户空间
reschedule:
call SYMBOL_NAME(schedule) // 调用 schedule() 函数进行进程的调度
jmp ret_from_sys_call

由于是汇编写的, 所以有点难懂, 所以在这里我大概说说这段代码的流程:

  • 1. 首先判断当前进程的 need_resched 字段是否为1.
  • 2. 如果进程的 need_resched 为1, 那么久调用 schedule() 函数进行进程的调度.
  • 3. 调用完 schedule() 函数后, 继续返回到 ret_from_sys_call 处执行.

更多Linux内核视频教程文档资料后台私信【内核大礼包】自行获取。

三,schedule()函数

现在我们来分析一下 schedule() 这个函数, 由于这个函数比较长, 所以我们分段来分析这个函数:

asmlinkage void schedule(void)
{
struct schedule_data * sched_data;
struct task_struct *prev, *next, *p;
struct list_head *tmp;
int this_cpu, c;
...
prev = current;
...
spin_lock_irq(&runqueue_lock);
if (prev->policy == SCHED_RR)
goto move_rr_last;
move_rr_back:switch (prev->state) {
case TASK_INTERRUPTIBLE:
if (signal_pending(prev)) {
prev->state = TASK_RUNNING;
break;
}
default:
del_from_runqueue(prev);
case TASK_RUNNING:
}
prev->need_resched = 0;

上面的代码首先判断当前进程是否可中断休眠状态, 并且接受到信号, 如果是唤醒当前进程. 如果当前进程是休眠状态, 那么就把当前进程从运行队列中删除. 接着把当前进程的 need_resched 字段设置为0。

repeat_schedule:
next = idle_task(this_cpu);
c = -1000;
if (prev->state == TASK_RUNNING)
goto still_running;
still_running_back:
list_for_each(tmp, &runqueue_head) {
p = list_entry(tmp, struct task_struct, run_list);
if (can_schedule(p, this_cpu)) {
int weight = goodness(p, this_cpu, prev->active_mm);
if (weight > c)
c = weight, next = p;
}
}

这段代码是便利运行队列中的所有进程, 然后通过调用 goodness() 函数来计算每个进程的运行优先级, 值越大就越先被运行, 找到的进程会被保存到 next 变量中. 我们来看看 goodness() 的计算过程:

static inline int goodness(struct task_struct * p, int this_cpu, struct mm_struct
*this_mm)
{
int weight;
weight = -1;
if (p->policy & SCHED_YIELD)
goto out;
if (p->policy == SCHED_OTHER) { // 普通进程
weight = p->counter;
if (!weight)
goto out;if (p->mm == this_mm || !p->mm)
weight += 1;
weight += 20 - p->nice;
goto out;
}
weight = 1000 + p->rt_priority;
out:
return weight;
}

计算过程很简单, 首先进程在Linux内核中分为实时进程和普通进程, 普通进程的计算方法就是:

进程时间片 + 20 - 进程的友好值

而实时进程的计算方法是:

1000 + 实时进程的优先级

我们继续来分析 schedule() 函数的余下部分:

prepare_to_switch();
{
// 切换进程的内存空间
struct mm_struct *mm = next->mm;
struct mm_struct *oldmm = prev->active_mm;
if (!mm) {
if (next->active_mm) BUG();
next->active_mm = oldmm;
atomic_inc(&oldmm->mm_count);
enter_lazy_tlb(oldmm, next, this_cpu);
} else {
if (next->active_mm != mm) BUG();
switch_mm(oldmm, mm, next, this_cpu);
}
if (!prev->mm) {
prev->active_mm = NULL;
mmdrop(oldmm);
}
}
switch_to(prev, next, prev);
__schedule_tail(prev);

找到合适的进程后, 接下来就是进行调度工作了. 调度工作首先调用 switch_mm() 函数来把旧进程的内存空切换到新进程的内存空间, 切换内存空间主要是通过把 cr3 寄存器的值设置为新进程页目录的地址. 接着调用 switch_to() 函数进行进程的切换, 我们来看看 switch_to() 函数的实现:

#define switch_to(prev,next,last) do { \
asm volatile("pushl %%esi\n\t" \
"pushl %%edi\n\t" \
"pushl %%ebp\n\t" \
"movl %%esp,%0\n\t" /* save ESP */ \
"movl %3,%%esp\n\t" /* restore ESP */ \
"movl $1f,%1\n\t" /* save EIP */ \
"pushl %4\n\t" /* restore EIP */ \
"jmp __switch_to\n" \
"1:\t" \
"popl %%ebp\n\t" \
"popl %%edi\n\t" \
"popl %%esi\n\t" \
:"=m" (prev->thread.esp),"=m" (prev->thread.eip), \
"=b" (last) \
:"m" (next->thread.esp),"m" (next->thread.eip), \
"a" (prev), "d" (next), \
"b" (prev)); \
} while (0)

又是一段难懂的汇编, 而且是比汇编更难懂的GCC嵌入汇编. 为了让大家不陷入痛苦之中, 这里主要介绍一下这些段代码的作用. 在 进程管理 一节中, 我们介绍过进程管理结构 task_struct 是放置在内核栈的底部的, 所只需要切换进程只需要切换内核栈即可. 这里正是通过这个方法来切换进程的, 我们看到的 movl %3, %%esp这行代码就是切换到新进程的内核栈,当调用完 schedule() 函数后, 现在通过 get_current() 函数获取到的当前进程就是我们刚才切换的信息进程了, 至此进程切换完成。

相关推荐

Python的RSA操作(私钥与公钥)(python rsa 公钥解密)

RSA是1977年由罗纳德·李维斯特(RonRivest)、阿迪·萨莫尔(AdiShamir)和伦纳德·阿德曼(LeonardAdleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA...

RSA在日益互联的世界网络中安全性能如何?

KeyFactor公司(美国一家领先的安全数字身份管理解决方案提供商及网络安全行业权威机构)研究表明,许多物联网设备制造商正在生成不安全的RSA密钥,182个RSA证书里就有一个可能会被破解,由于不正...

让频谱分析更高效,澄清RSA使用中的一些误解

从事射频应用的研究人员、工程师和技术人员通常都能充分理解频谱分析仪的用途和优点,无论是传统的扫频分析仪(TSA)还是更现代的矢量信号分析仪(VSA)。他们熟练掌握这些重要射频仪器的关键规范和工作...

微软公告:Win10/Win11将不再支持短于2048位的RSA密钥证书

IT之家3月16日消息,微软近日发布公告,表示即将放弃短于2048位的RSA密钥证书。在公告中微软并未明确弃用时间,对于用户来说,这其实有利于构建更安全的上网环境。IT之家翻译微软公告...

目前已知的最强加密算法RSA(rsa加密算法的优点)

前面有人让我讲解一下RSA算法,今天我就用我所学的知识讲解一下,首先我们先了解一下RSARSA是一种非对称加密算法,1977年由罗纳德·李维斯特(RonRivest)、阿迪·萨莫尔(AdiSha...

韩国 CryptoLab 将在 2025年 RSA 大会发布加密人脸识别解决方案

据美通社4月23日报道,韩国同态加密网络安全企业CryptoLab宣布,将于4月24日在2025年RSA大会上,首次发布加密人脸识别(EFR)方案,为生物识别安全难题提供创新解法。当前,人脸识...

应对变化!盘点RSA2015十大热门产品

4月20日-24日,全球知名信息安全峰会RSAConference2015在美国旧金山召开。作为IT安全领域的权威科技大会,RSA大会不仅会邀请各地区著名安全专家出席与分享,更吸引汇集了全球众多顶...

RSA 2015主题:变化挑战当今的安全理念

1“变化”成为RSA2015主题4月20日-24日,全球知名信息安全峰会RSAConference2015在美国旧金山召开。作为IT安全领域的权威科技大会,RSA大会不仅会邀请各地区著名安全专家出...

非对称加密——一文看懂RSA(非对称加密详解)

非对称加密----RSA的使用"非对称加密也叫公钥密码:使用公钥加密,使用私钥解密"在对称密码中,由于加密和解密的密钥是相同的,因此必须向接收者配送密钥。用于解密的密钥必须被配送给...

RSA算法详解(rsa算法图解)

什么是RSA前面文章我们讲了AES算法,AES算法是一种是对称加密算法,本文我们来介绍一个十分常用的非对称加密算法RSA。非对称加密算法也叫公钥密码算法,通过生成的公私钥来对明文密文进行加密解密。R...

升级SSH后ssh-rsa失效?一文带你轻松解决!

背景今天刚给Linux桌面系统完成升级,结果SSH连接突然“罢工”了,还弹出了这个报错信息:...

历史回顾RSA大会:25年,十个瞬间(rsa conference)

国家安全局、Clipper芯片、苹果对决FBI、禁止ShowGirl——RSA大会都经历过。RSA需要你RSA这个词代表一家密码及安全厂商,也代表着世界上最大的网络安全展会,它今年在旧...

RSA 加密技术详解(rsa的加密原理是什么)

RSA的安全性基于数学难题的理论安全:RSA的安全性主要基于大质数分解和离散对数问题这两个数学难题。在RSA加密算法中,公钥包含一个大整数N,它是两个大质数p和q的乘积。攻击者如果想要破解RSA加密,...

「游戏开发」请别再说Unity不如Unreal:Unity室内场景 + 光照练习 3

关注“indienova”,挖掘独立游戏的更多乐趣引言上两节慢吞吞的补了很多技术实现的细节,感觉要是把用到的所有技术细节都过一遍可能还需要若干篇文章。所以决定先把整体的流程这篇好玩的写了,以后再慢慢补...

再做一个Android!Google发布第二代VR眼镜Cardboard

在去年的GoogleI/O上,Google向所有与会者发放了一款名为Cardboard的纸盒版虚拟现实眼镜,相比OculusRift等颇为酷炫的VR头盔,第一代Cardboard着实糙得很。不过,...