3种python3的canny边缘检测之静态,可调节和自适应
haoteby 2024-12-23 10:28 13 浏览
△ 先看高级版的python3的canny的自适应边缘检测:
△ 内容:
1 canny的边缘检测的介绍。
2 三种方法的canny的边缘检测,由浅入深地介绍:固定值的静态,可自调节的,自适应的。
△ 说明:
1 环境:python3.8、opencv4.5.3和matplotlib3.4.3。
2 图片:来自今日头条正版免费图库。
3 实现自适应阈值的canny边缘检测的参考代码和文章:
#基于python2实现自适应阈值的canny
https://github.com/sadimanna/canny
#本文基于python3,复现一种自适应的阈值分割方法。
https://blog.csdn.net/lyxleft/article/details/91558726?spm=1001.2014.3001.5501
上述的代码,本机均有报错,故对代码进行修改,注释和运行。
△ 初级canny:
1 介绍:opencv中给出了canny边缘检测的接口,直接调用:
ret = cv2.canny(img,t1,t2)
即可得到边缘检测的结果ret,其中,t1,t2是需要人为设置的阈值。
2 python的opencv的一行代码即可实现边缘检测。
3 Canny函数及使用:
函数:Canny edges = cv2.Canny(image, threshold1, threashold2)
参数:
image : 原始图像
threshold1 : 阈值1 (minVal)
threshold2 : 阈值2 (maxVal)
返回值:edges : 边缘图像
4 Canny边缘检测流程:
去噪 --> 梯度 --> 非极大值抑制 --> 滞后阈值
Canny边缘检测算法其实非常复杂,包括4个步骤:
1 去噪:用高斯滤波器对图像进行去噪
2 梯度:计算梯度
3 NMS:在边缘上使用非极大值抑制(NMS)
4 滞后阈值:
在检测到的边缘上使用双阈值去除假阳性
分析所有的边缘及其之间的连接,以保留真正的边缘去除不明显的边缘
5 代码:
import cv2
img = cv2.imread("/home/xgj/Desktop/edge_detection/snake.jpeg", cv2.IMREAD_GRAYSCALE)
cv2.imshow("snake", img)
ret1 = cv2.Canny(img, 100, 200) #人工设置固定值
cv2.imshow("result1", ret1)
ret2 = cv2.Canny(img, 20, 60) #人工设置固定值
cv2.imshow("result2", ret2)
cv2.waitKey()
cv2.destroyAllWindows()
6 操作和过程:
7 原图:
8 疑问:
ret = cv2.canny(img,t1,t2),其中,t1,t2是需要人为设置的阈值,一般人怎么知道具体数值是多少,才是最佳的呀?所以,这是它的缺点。
△ 中级canny:
1 中级canny,就是可调节的阈值,找到最佳的canny边缘检测效果。
2 采用cv2.createTrackbar来调节阈值。
3 代码:
import cv2
import numpy as np
img= cv2.imread('/home/xgj/Desktop/edge_detection/3_self_canny/girl.jpeg')
cv2.namedWindow('Canny edge detect') #设置窗口,cv2.WINDOW_NORMAL表示窗口大小可自动调节
cv2.namedWindow('Original Image')
def nothing(x):
pass
# 创建两个滑动条,分别控制minVal(最小阈值)、maxVal(最大阈值).
# minVal:滑动条名称; 'Canny edge detect':窗口名; 60:滑动条默认滑动位置; 300:最大值 ; nothing:回调函数
cv2.createTrackbar('minVal','Canny edge detect',60,300,nothing)
cv2.createTrackbar('maxVal','Canny edge detect',100,400,nothing)
while(1):
#获得滑动条所在的位置
#cv2.getTrackbarPos(滑动条名称,窗口名);
minVal = cv2.getTrackbarPos('minVal','Canny edge detect')
maxVal = cv2.getTrackbarPos('maxVal','Canny edge detect')
#Canny边缘检测
#cv2.Canny函数参数解析:
# img:原图像名
# minVal:最小梯度
# maxVal:最大梯度
# 5 :5*5大小的高斯滤波器(卷积核),用来消除噪声影响
# L2gradient :求图像梯度,从而进行去除非边界上的点(非极大值抑制)
edgeImage = cv2.Canny(img,minVal,maxVal,5,L2gradient=True)
#显示图片
cv2.imshow('Original Image',img) #原图
cv2.imshow('Canny edge detect',edgeImage) # Canny检测后的图
k = cv2.waitKey(1)
if k ==ord('q')& 0xFF: # 按 q 退出
break
cv2.destroyAllWindows()#销毁窗口
4 操作和效果:
5 原图:
△ 高级canny:
1 自适应canny的算法:
ret = cv2.canny(img,t1,t2)
即算法在运行过程中能够自适应地找到较佳的分割阈值t1,t2。
2 文件结构:
3 main.py代码:
# 主程序:main.py
# 第1步:模块导入
import numpy as np
import cv2, time, math
from matplotlib import pyplot as plt
from scipy.signal import convolve2d as conv2
#两个自定义模块(库)导入
from bilateralfilt import bilatfilt
from dog import deroGauss
# 第2步:函数定义
# 2-1 获取边缘函数:用高斯滤波器对图像进行去噪
def get_edges(I,sd):
dim = I.shape
Idog2d = np.zeros((nang,dim[0],dim[1]))
for i in range(nang):
dog2d = deroGauss(5,sd,angles[i])
Idog2dtemp = abs(conv2(I,dog2d,mode='same',boundary='fill'))
Idog2dtemp[Idog2dtemp<0]=0
Idog2d[i,:,:] = Idog2dtemp
return Idog2d
# 2-2 计算梯度
def calc_sigt(I,threshval):
M,N = I.shape
ulim = np.uint8(np.max(I))
N1 = np.count_nonzero(I>threshval)
N2 = np.count_nonzero(I<=threshval)
w1 = np.float64(N1)/(M*N)
w2 = np.float64(N2)/(M*N)
try:
u1 = sum(i*np.count_nonzero(np.multiply(I>i-0.5,I<=i+0.5))/N1 for i in range(threshval+1,ulim))
u2 = sum(i*np.count_nonzero(np.multiply(I>i-0.5,I<=i+0.5))/N2 for i in range(threshval+1))
uT = u1*w1+u2*w2
sigt = w1*w2*(u1-u2)**2
except:
return 0
return sigt
# 2-3 非极大值抑制(NMS)
def nonmaxsup(I,gradang):
dim = I.shape
Inms = np.zeros(dim)
xshift = int(np.round(math.cos(gradang*np.pi/180)))
yshift = int(np.round(math.sin(gradang*np.pi/180)))
Ipad = np.pad(I,(1,),'constant',constant_values = (0,0))
for r in range(1,dim[0]+1):
for c in range(1,dim[1]+1):
maggrad = [Ipad[r-xshift,c-yshift],Ipad[r,c],Ipad[r+xshift,c+yshift]]
if Ipad[r,c] == np.max(maggrad):
Inms[r-1,c-1] = Ipad[r,c]
return Inms
# 2-4-1 阈值
def threshold(I,uth):
lth = uth/2.5
Ith = np.zeros(I.shape)
Ith[I>=uth] = 255
Ith[I<lth] = 0
Ith[np.multiply(I>=lth, I<uth)] = 100
return Ith
# 2-4-2 hysteresis=滞后(效应)
def hysteresis(I):
r,c = I.shape
Ipad = np.pad(I,(1,),'edge')
c255 = np.count_nonzero(Ipad==255)
imgchange = True
for i in range(1,r+1):
for j in range(1,c+1):
if Ipad[i,j] == 100:
if np.count_nonzero(Ipad[r-1:r+1,c-1:c+1]==255)>0:
Ipad[i,j] = 255
else:
Ipad[i,j] = 0
Ih = Ipad[1:r+1,1:c+1]
return Ih
# 2-4-3 获取最佳阈值
def get_threshold(I):
max_sigt = 0
opt_t = 0
ulim = np.uint8(np.max(I))
print(ulim,'\n')
for t in range(ulim+1):
sigt = calc_sigt(I,t)
if sigt > max_sigt:
max_sigt = sigt
opt_t = t
print ('optimal high threshold: ',opt_t,'\n')
return opt_t
# 第3步:图片读取
# 读取原图
img = cv2.imread('/home/xgj/Desktop/edge_detection/3_self_canny/car.jpeg')
# 判断原图大小,如果大于多少,就调节图片大小
# 否则不调节
while img.shape[0] > 1100 or img.shape[1] > 1100:
img = cv2.resize(img,None, fx=0.5,fy=0.5,interpolation = cv2.INTER_AREA)
# 转换为gray灰度图
gimg = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
dim = img.shape #获取图片大小
# 第4步:开始图像的canny的自适应操作
#Bilateral filtering=双边滤波
print("总共有2步:有一定的耗时,与图片大小有关\n")
print("第1步:\n")
print ('Bilateral filtering...\n')
# 双边滤波:达到保边去噪
gimg = bilatfilt(gimg,5,3,10)
print ('after bilat: ',np.max(gimg),'\n')
#获取时间计时
stime = time.time()
angles = [0,45,90,135]
nang = len(angles)
#Gradient of Image=图片的梯度
print ('Calculating Gradient...\n')
img_edges = get_edges(gimg,2)
print ('after gradient: ',np.max(img_edges),'\n')
#Non-max suppression:在边缘上使用非极大值抑制(NMS)
print ('Suppressing Non-maximas...\n')
for n in range(nang):
img_edges[n,:,:] = nonmaxsup(img_edges[n,:,:],angles[n])
print ('after nms: ', np.max(img_edges),'\n')
print ('请关掉matplotlib的图形窗口,进行下一步自适应。。。\n')
img_edge = np.max(img_edges,axis=0)
lim = np.uint8(np.max(img_edge))
plt.imshow(img_edge)
plt.show()
print("第2步 函数调用:\n")
# 计算阈值
print ('Calculating Threshold...\n')
th = get_threshold(gimg)
the = get_threshold(img_edge)
# 获取阈值
print ('\nThresholding...\n')
img_edge = threshold(img_edge, the*0.25)
# 在边缘上使用非极大值抑制,滞后效应,获取自适应阈值
print ('Applying Hysteresis...\n')
img_edge = nonmaxsup(hysteresis(img_edge),90)
# 第5步:canny调用获取的自适应阈值
# 获取自适应的阈值采用canny进行边缘检测
img_canny = cv2.Canny(np.uint8(gimg),th/3,th)
cv2.imshow('Uncanny',img_edge)
cv2.imshow('Canny',img_canny)
print( 'Time taken :: ', str(time.time()-stime)+' seconds...\n')
print("结束!!")
cv2.waitKey(0)
4 dog.py代码:
import numpy as np
import math
def deroGauss(w=5,s=1,angle=0):
wlim = (w-1)/2
y,x = np.meshgrid(np.arange(-wlim,wlim+1),np.arange(-wlim,wlim+1))
G = np.exp(-np.sum((np.square(x),np.square(y)),axis=0)/(2*np.float64(s)**2))
G = G/np.sum(G)
dGdx = -np.multiply(x,G)/np.float64(s)**2
dGdy = -np.multiply(y,G)/np.float64(s)**2
angle = angle*math.pi/180
dog = math.cos(angle)*dGdx + math.sin(angle)*dGdy
return dog
5 bilateralfilt.py代码:
import numpy as np
# 双边滤波
def bilatfilt(I,w,sd,sr):
dim = I.shape
Iout= np.zeros(dim)
wlim = (w-1)//2
y,x = np.meshgrid(np.arange(-wlim,wlim+1),np.arange(-wlim,wlim+1))
g = np.exp(-np.sum((np.square(x),np.square(y)),axis=0)/(2*(np.float64(sd)**2)))
Ipad = np.pad(I,(wlim,),'edge')
for r in range(wlim,dim[0]+wlim):
for c in range(wlim,dim[1]+wlim):
Ix = Ipad[r-wlim:r+wlim+1,c-wlim:c+wlim+1]
s = np.exp(-np.square(Ix-Ipad[r,c])/(2*(np.float64(sr)**2)))
k = np.multiply(g,s)
Iout[r-wlim,c-wlim] = np.sum(np.multiply(k,Ix))/np.sum(k)
return Iout
6 原图:
7 效果图:本文第一个gif图,此处省略。
△ 小结:
1 本文由浅入深,总结的很好,适合收藏。
2 对于理解python的opencv的canny的边缘检测,很有帮助。
3 本文高级版canny自适应的算法参考2篇文章,虽然我进行代码的删除,注释,修改,优化等操作,故我不标注原创,对原作者表达敬意。
4 自己总结和整理,分享出来,希望对大家有帮助。
相关推荐
- 一日一技:用Python程序将十进制转换为二进制
-
用Python程序将十进制转换为二进制通过将数字连续除以2并以相反顺序打印其余部分,将十进制数转换为二进制。在下面的程序中,我们将学习使用递归函数将十进制数转换为二进制数,代码如下:...
- 十进制转化成二进制你会吗?#数学思维
-
六年级奥赛起跑线:抽屉原理揭秘。同学们好,我是你们的奥耀老师。今天一起来学习奥赛起跑线第三讲二进制计数法。例一:把十进制五十三化成二进制数是多少?首先十进制就是满十进一,二进制就是满二进一。二进制每个...
- 二进制、十进制、八进制和十六进制,它们之间是如何转换的?
-
在学习进制时总会遇到多种进制转换的时候,学会它们之间的转换方法也是必须的,这里分享一下几种进制之间转换的方法,也分享两个好用的转换工具,使用它们能够大幅度的提升你的办公和学习效率,感兴趣的小伙伴记得点...
- c语言-2进制转10进制_c语言 二进制转十进制
-
#include<stdio.h>intmain(){charch;inta=0;...
- 二进制、八进制、十进制和十六进制数制转换
-
一、数制1、什么是数制数制是计数进位的简称。也就是由低位向高位进位计数的方法。2、常用数制计算机中常用的数制有二进制、八进制、十进制和十六进制。...
- 二进制、十进制、八进制、十六进制间的相互转换函数
-
二进制、十进制、八进制、十六进制间的相互转换函数1、输入任意一个十进制的整数,将其分别转换为二进制、八进制、十六进制。2、程序代码如下:#include<iostream>usingna...
- 二进制、八进制、十进制和十六进制等常用数制及其相互转换
-
从大学开始系统的接触计算机专业,到现在已经过去十几年了,今天整理一下基础的进制转换,希望给还在上高中的表妹一个入门的引导,早日熟悉这个行业。一、二进制、八进制、十进制和十六进制是如何定义的?二进制是B...
- 二进制如何转换成十进制?_二进制如何转换成十进制例子图解
-
随着社会的发展,电器维修由继电器时代逐渐被PLC,变频器,触摸屏等工控时代所替代,特别是plc编程,其数据逻辑往往涉及到数制二进制,那么二进制到底是什么呢?它和十进制又有什么区别和联系呢?下面和朋友们...
- 二进制与十进制的相互转换_二进制和十进制之间转换
-
很多同学在刚开始接触计算机语言的时候,都会了解计算机的世界里面大多都是二进制来表达现实世界的任何事物的。当然现实世界的事务有很多很多,就拿最简单的数字,我们经常看到的数字大多都是十进制的形式,例如:我...
- 十进制如何转换为二进制,二进制如何转换为十进制
-
用十进制除以2,除的断的,商用0表示;除不断的,商用1表示余0时结束假如十进制用X表示,用十进制除以2,即x/2除以2后为整数的(除的断的),商用0表示;除以2除不断的,商用1表示除完后的商0或1...
- 十进制数如何转换为二进制数_十进制数如何转换为二进制数举例说明
-
我们经常听到十进制数和二进制数,电脑中也经常使用二进制数来进行计算,但是很多人却不清楚十进制数和二进制数是怎样进行转换的,下面就来看看,十进制数转换为二进制数的方法。正整数转二进制...
- 二进制转化为十进制,你会做吗?一起来试试吧
-
今天孩子问把二进制表示的110101改写成十进制数怎么做呀?,“二进制”简单来说就是“满二进一”,只用0和1共两个数字表示,同理我们平常接触到的“十进制”是“满十进一”,只用0-9共十个数字表示。如果...
- Mac终于能正常打游戏了!苹果正逐渐淘汰Rosetta转译
-
Mac玩家苦转译久矣!WWDC2025苹果正式宣判Rosetta死刑,原生游戏时代终于杀到。Metal4光追和AI插帧技术直接掀桌,连Steam都连夜扛着ARM架构投诚了。看到《赛博朋克2077》...
- 怎么把视频的声音提出来转为音频?音频提取,11款工具实测搞定
-
想把视频里的声音单独保存为音频文件(MP3/AAC/WAV/FLAC)用于配音、播客、听课或二次剪辑?本文挑出10款常用工具,给出实测可复现的操作步骤、优缺点和场景推荐。1)转换猫mp3转换器(操作门...
- 6个mp4格式转换器测评:转换速度与质量并存!
-
MP4视频格式具有兼容性强、视频画质高清、文件体积较小、支持多种编码等特点,适用于网络媒体传播。如果大家想要将非MP4格式的视频转换成MP4的视频格式的话,可以使用MP4格式转换器更换格式。本文分别从...